

まえがき

Deep Learning Code Golfは、筆者が作成した言葉で、「深層学習のモデル定義をでき
るだけ短いソースコードで表現する」というゲームです。様々なアルゴリズムを短いソー
スコードで表現する「コードゴルフ」という遊びがプログラマの間で従来から行われてき
ましたが、それを深層学習に応用したものとなります。本書は主に 2つのパートからなり
ます。1つ目は、Deep Learning Code Golfという新しい遊びのルール化についてです。
2つ目は、そのルールに従って短いソースコードを書くテクニックの解説です。最終的に
開発したコードは、リスト 1のようになります。どうしてもライブラリの呼び出しが中心
となるため、通常のコードゴルフほど奇怪なコードは記述できませんでしたが、深層学習
に特化した黒魔術をお楽しみいただければ幸いです。

▼リスト 1 Deep Learning Code Golf の解答例

from torch.nn import*
S=Sequential
m=lambda:S(*[S(LazyConv2d(99,3,i),BatchNorm2d(99),ReLU())for i in[1,2]*3],
→Flatten())

本書では以下の知識を前提としており、発展的な事項のみを解説しておりますのでご了
承ください。

• Pythonの基本文法
• 深層学習の基礎

免責事項
本書に記載された内容は、情報の提供のみを目的としています。したがって、本書を用
いた開発、製作、運用は、必ずご自身の責任と判断によって行ってください。これらの情
報による開発、製作、運用の結果について、筆者はいかなる責任も負いません。

1

目次

まえがき 1

第 1章 イントロダクション 3
1.1 Deep Learning Code Golfとは . 3
1.2 ルール設計と実行環境 . 6

1.2.1 深層学習を用いて解くべき課題の設定 6
1.2.2 プレイヤーが記述するコードの範囲 6
1.2.3 実行時間 . 7
1.2.4 テスト用データに対する最適化 7
1.2.5 実行環境 . 7
1.2.6 ルールのまとめ . 8
1.2.7 再現性について . 9

第 2章 コード解説 10
2.1 ベースライン . 10
2.2 正解率 30%以上: 最短のコード . 11
2.3 正解率 40%以上: 複数レイヤーの導入 12
2.4 正解率 50%以上: 畳み込みの導入 . 12
2.5 正解率 70%以上: ループの導入 . 13
2.6 ConvMixerのテクニック . 16

付録 A TensorFlowへの移植 18
A.1 環境構築 . 18
A.2 PyTorchとの相違点 . 19
A.3 Residual構造を記述する . 21

あとがき 23

2

第 1章

イントロダクション

1.1 Deep Learning Code Golfとは
Deep Learning Code Golfは、筆者が作成した言葉で、「深層学習のモデル定義をでき
るだけ短いソースコードで表現する」というゲームです。このゲームを考えたきっかけ
は、深層学習の新しいモデル構造 ConvMixerを提案する論文*1で、手法の簡潔さを主張
するためのおまけとして 280 文字以下で定義できるという参考コード（リスト 1.1）が
Twitter上で話題となっていたためです。論文自体はコードの長さ自体を短くすることを
目標としているわけではありませんが、本書の筆者はコードを短くすること自体をゲーム
にしたらどうなるか興味を持ったので考察することにしました。

▼リスト 1.1
ConvMixer のコード（→は紙面上折り返しているが、コード上は前の行から継続し
ていることを示す）

def ConvMixr(h,d,k,p,n):
S,C,A=Sequential,Conv2d,lambda x:S(x,GELU(),BatchNorm2d(h))
R=type('',(S,),{'forward':lambda s,x:s[0](x)+x})
return S(A(C(3,h,p,p)),*[S(R(A(C(h,h,k,groups=h,padding=k//2))),A(C(h,h,1))) for
→ i in range(d)],AdaptiveAvgPool2d((1,1)),Flatten(),Linear(h,n))

Deep Learning Code Golf（以下 DLCG）の元となったのは、以前より知られている
コードゴルフ（Code Golf）というゲームです。コードゴルフは、ショートコードとも呼
ばれます。コードゴルフは、特定の課題を解くプログラムを、できるだけ短いソースコー
ドで表現するゲームです。コードゴルフという名称は、スポーツのゴルフのように短い打
数（文字数）でゴールすることからつけられたようです。コードゴルフで解く課題の例と

*1 Patches Are All You Need? （ 執 筆 時 点 で は 査 読 中 の 論 文 で 、匿 名 ）
https://openreview.net/forum?id=TVHS5Y4dNvM

3

第 1章イントロダクション

して有名なのは、FizzBuzz問題です。FizzBuzz問題とは、「1から 100までの数を出力
せよ。ただし、3 の倍数の場合は Fizz、5 の倍数の場合は Buzz、3 の倍数かつ 5 の倍数
の場合は FizzBuzzと出力せよ」という問題です。この問題を Python言語で普通に解く
コードは、リスト 1.2のようになります。もちろん通常のプログラミングではこれで正解
なのですが、コードゴルフでは、このコードをできるだけ短くする（コード自体の文字数
を少なくする）ことを目指します。例えば Pythonではインデントが必須であるもののス
ペース 1個で十分で、%などの演算子の前後のスペースも不要ですので、元のコードと実
行結果を変えずにリスト 1.3のように書き換えることができます。これにより、コードが
196文字から 143文字に減少します。文法レベルの書き換えだけでなく、「3の倍数かつ 5
の倍数」を「15 の倍数」と言い換えてロジックを組みなおせばリスト 1.4 のように少し
短くなります。さらに多くのテクニックを用いると、リスト 1.5のようなコードになりま
す。ここまでくると、理解困難なコードとなるのが分かるでしょう。通常のプログラミン
グで重視される、コードの理解しやすさや変更のしやすさ、場合によっては実行速度を無
視して、コードが短いということそれ自体を追求するのがコードゴルフの目的です。コー
ドゴルフはプログラミング言語の仕様を最大限活用するゲームですので、言語によって使
えるテクニックや実現できるコードの文字数が変わってきます。本書では、Python言語
（バージョン 3系）を使用します。
従来のコードゴルフのほとんどでは、入力が決まれば出力が一意に定まるような課題が
扱われてきました。アルゴリズムが違ったとしても、結果自体が変化しないことが条件と
なります。しかし本書で扱う DLCGでは、若干異なります。深層学習は機械学習の一種
で、画像などを入力し、その中に含まれる文字や物体を認識するというモデルを生成する
ことが課題です。分類正解率が 100%であれば一意の出力となりますが、通常は 100%に
はならず、ある程度の誤りが含まれます。多数の入力画像に対して統計的に正解率が一定
以上であればよいと考え、具体的に各入力画像に対してどのような出力をするかは一意に
定まらないのが普通です。正解率を決める要因は課題自体の難しさのほか、モデルの構造
や学習時の手法などに影響されます。モデルの構造に自由度を持たせることが DLCGの
ユニークな点で、「正解率**%以上のモデルを記述せよ」という課題になります。あまり
に単純なモデルだと表現力が足りず正解率が低くなるという傾向がありますので、一定の
正解率を担保しつつ、モデルの構造を簡略化したりコードレベルの実装方法を短くしたり
することに戦略性が生まれます。

4

1.1 Deep Learning Code Golfとは

▼リスト 1.2 FizzBuzz の標準的な実装

for i in range(1, 101):
if i % 3 == 0 and i % 5 == 0:

print("FizzBuzz")
elif i % 3 == 0:

print("Fizz")
elif i % 5 == 0:

print("Buzz")
else:

print(i)

▼リスト 1.3 不要なスペースを削除

for i in range(1,101):
if i%3==0 and i%5==0:
print("FizzBuzz")

elif i%3==0:
print("Fizz")

elif i%5==0:
print("Buzz")

else:
print(i)

▼リスト 1.4 ロジックを改良

for i in range(1,101):
if i%15==0:
print("FizzBuzz")

elif i%3==0:
print("Fizz")

elif i%5==0:
print("Buzz")

else:
print(i)

▼リスト 1.5 FizzBuzz の最短コード（59bytes）*2

for i in range(100):print(i%3//2*"Fizz"+i%5//4*"Buzz"or-~i)

*2 https://qiita.com/ymg_aq/items/b8e5d26035180bc8797e#python3-59-bytes

5

第 1章イントロダクション

1.2 ルール設計と実行環境
Deep Learning Code Golf をゲームとして遊ぶにあたり、課題やその達成度を測る指
標が必要です。そのためのルールを考えました。

1.2.1 深層学習を用いて解くべき課題の設定
深層学習を用いて解く課題としては、画像を入力とし、10 種類の物体のうちどれが

写っているかを認識して分類する画像分類問題を扱うこととしました。より具体的には、
CIFAR-10 データセット*3を用います。画像は 32 ピクセル四方のフルカラー（RGB の
3チャンネル）で、分類すべき物体は 10種類（飛行機、自動車、鳥…）です。学習用画
像が 5 万枚、テスト用画像が 1 万枚あります。課題設定として重要なのは、要求される
モデルの複雑さと計算コストです。画像分類の入門課題としてよく用いられる MNIST
データセットは簡単すぎて、極めて単純な構造のモデルでも正解率 99%が得られてしま
い、モデル定義の工夫によって差がつきません。逆に、実用に近い課題として用いられる
ImageNetデータセットは複雑すぎて、学習初期の段階では全く正解できず、学習を数時
間進めないと差がつきません。解き方によって短時間で差がつくという基準をもとにデー
タセットを選定しました。性質の異なる課題としては、ニュース記事（英単語の列）を入
力して記事のジャンルのいずれに該当するかに分類するようなシーケンス処理問題なども
考えられます。課題によって適切なモデルの構造が大きく異なるため、面白い課題を考え
てみるのもよいでしょう。
次に、課題自体とは別に、ゲームとして成立させるための諸条件を考察します。

1.2.2 プレイヤーが記述するコードの範囲
深層学習を実行するには、モデルの定義だけでなく、学習データの前処理機構、オプ
ティマイザなどいくつかの機構が必須となります。いずれの機構も正解率に影響を与えま
すし、様々な書き方が考えられます。ゲームとして注力すべき部分がブレないように、プ
レイヤーが記述すべき範囲と、課題として固定された機構を与える範囲を分ける必要があ
ります。そのため、プレイヤーが記述するのは、モデル定義を行う関数 mだけとし、この
関数を呼び出すとモデルオブジェクトを返すものとします。
コードの長さは、文字数で計測しました。アルファベットでも漢字でも 1文字にカウン
トします。改行も 1文字と数えます。コードの先頭・末尾の改行文字は無視します。

*3 Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.

6

1.2 ルール設計と実行環境

1.2.3 実行時間
プレイヤーが書いたコードで生成されるモデルが所定の正解率を達成できるかどうか評
価するには、実際に学習を行う必要があります。深層学習は計算コストが高く、高性能な
GPUを搭載した計算機で何日もかかる場合もあります。計算時間がかかりすぎるとゲー
ムとして遊べないため、数分以内に完了することが望ましいと考えられます。後述する実
行環境において、合理的な複雑さのモデルが 1分程度で学習できるようなデータセット及
び学習ループ回数（エポック数）を目指しました。
これを満たす制約として、5エポック（学習用画像全部をモデルに投入して、モデルパ
ラメータを更新するサイクルを 5回行う）学習させるという条件としました。ただし、モ
デルの複雑さやパラメータ数自体に制約を設けていないので、極端に複雑なものを定義す
ればいくらでも計算時間が長くなり得ます。現実的には、表現力の高い複雑なモデルは短
いエポック数ではあまり正解率が高くならないことが多く、有力な解答にはなりづらいと
考えられます。

1.2.4 テスト用データに対する最適化
機械学習では本来、テスト用のデータは未知のデータであり、テスト用データでの正解
率を最適化の指標として使うべきではありません。モデルの学習へフィードバックするた
めの評価用データとテスト用データは分かれているのが正当です。しかしながらゲームと
してこれらの指標を明確に分離するのは難しいため、テスト用データでの正解率が高まる
ようにモデルのハイパーパラメータを最適化しても構わないものとします。

1.2.5 実行環境
環境構築および起動に手間がかかるとゲームとして遊びにくいです。本書では、深層
学習向けに作られたクラウド上のインタラクティブな Python 実行環境である Google
Colabを活用することとしました。Pythonの標準ライブラリだけで深層学習を行うのは
事実上不可能なので、深層学習ライブラリとして PyTorchを用いました。Google Colab
では初期状態でインストール済みです。さらに、学習ループの記述を簡略化するため
PyTorch Lightningおよび Lightning Boltsを用いました。ただしこれらのライブラリの
使用によってプレイヤーの書くべきコードに変化はありません。モデル定義のコードを文
字列として評価用の関数に与えると、その文字数と学習結果得られたモデルの正解率を算
出するような環境を整備しました。なお、深層学習ライブラリとして Tensorflowを用い
た場合の検討を付録に掲載しています。実行環境のスクリーンショットを図 1.1に示しま

7

第 1章イントロダクション

す。e関数に文字列としてモデル定義コードを与えると、学習を行ったうえで正解率と、
コードの長さを表示してくれます。

▲図 1.1 Google Colab 環境でのコード記述例

1.2.6 ルールのまとめ
結論として、以下のようなルールとしました。

• 以下の条件設定で学習させた際に、テスト用データでの正解率 X%以上となるコー
ドを記述せよ。

– X=10,20,...
• プレイヤーが記述するコードの条件

– 引数のない関数 mを定義する。実行されると PyTorchのモジュールオブジェ
クトを返す。

– mの内部で必要なモジュールは、コード内でインポートする。
• 学習条件

– m()が返したモジュールオブジェクトに対し、評価システム側で学習用データ
による学習を行なったのち、テスト用データにより正解率を計算し出力する。

– データセット: CIFAR-10
– データオーグメンテーション: 4pxパディングしてランダムクロップ、ランダ
ム左右反転（注：ゲームとしてはあまり重要ではないが、CIFAR10を用いた
サンプルコードの記述を継承）

– オプティマイザ: Adam(lr=1e-3)

8

1.2 ルール設計と実行環境

– バッチサイズ: 256
– エポック数: 5

1.2.7 再現性について
深層学習では、モデルパラメータを初期化する乱数や、モデルに与えるデータの順序な
どにより学習結果に違いが出ます。これらの数学的な違い以外にも、GPU上での並列計
算の実行順序に伴うハードウェアレベルの非決定的な挙動があり、完全な再現は難しいの
が実情です。本書の実行環境ではリスト 1.6により乱数の固定を試みました。同じハード
ウェア・ソフトウェアのバージョンで複数回実行したところ同じ結果が得られるようでし
た。一方で環境が違う場合までは保証できないため、賞金が出るようなコンペを実施する
には難しい点となります。

▼リスト 1.6 再現性を担保する設定

pytorch_lightning.seed_everything(1, True)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)

本書執筆時点でのライブラリのバージョンを表 1.1に示します。第 2章で掲載するコー
ド例では実験的機能も利用しているため、将来のバージョンでは同じコードが使えない可
能性があります。

▼表 1.1 ライブラリのバージョン
Python 3.7.12
torch 1.10.0+cu111
torchvision 0.11.1+cu111
pytorch_lightning 1.5.1
pl_bolts （lightning-bolts） 0.4.0
tensorflow（付録で使用） 2.7.0

実行環境の Colab notebook は https://colab.research.google.com/drive/

1KGZFdERNGVAofSCEBnEMfeRENOpWcCUA?usp=sharingにて配布しています。また、書
いたコードを投稿できるサイトを試作しました。https://dlcodegolf.web.app/から
アクセスできます。

9

https://colab.research.google.com/drive/1KGZFdERNGVAofSCEBnEMfeRENOpWcCUA?usp=sharing
https://colab.research.google.com/drive/1KGZFdERNGVAofSCEBnEMfeRENOpWcCUA?usp=sharing
https://dlcodegolf.web.app/

第 2章

コード解説

本章では、筆者が実際に DLCG に取り組んで記述したコードと、そこで用いたテク
ニックを解説します。

2.1 ベースライン
▼リスト 2.1 ベースラインコード: 43.41%, 104 文字

from torch.nn import *
def m():

return Sequential(Flatten(),Linear(32*32*3,32),ReLU(),Linear(32,10))

まずはコードを短くするテクニックを用いる前の、最も基本となるコードをリスト 2.1
に示します。これは、全結合層 2層からなるモデルです。本書のルールでは、コード中で
関数 m を定義し、これを実行すると、ニューラルネットワークの実行順序を定めるモデ
ル構造及び学習されるパラメータを包含するモジュールオブジェクト（torch.nn.Modu

leのサブクラス）が生成されるように実装する必要があります。PyTorchでモジュール
オブジェクトを生成するには、torch.nn 以下に定義されているクラスを使います。*で
インポートを行うと何がインポートされたのか分かりづらいため通常の開発ではあまり用
いませんが、毎回 torch.nn.Sequential のような記述をすると長くなるため、基本テ
クニックとして使用します。本書の範囲では、これ以外のインポートは行いません。Seq

uential は、引数で指定したレイヤー（本書ではモジュールオブジェクトとほぼ同じ意
味で使います）全てを包含し、先頭から順に実行するようなレイヤーです。枝分かれのな
いモデルを定義するのに有用です。枝分かれがある場合も含めた一般的なモデル定義の方
法はリスト 2.2のようになりますが、明らかにコードが長くなります。モデルへの入力テ

10

2.2 正解率 30%以上: 最短のコード

ンソルは、32× 32ピクセルの RGB画像なので [バッチサイズ, 3, 32, 32]となって
います。Linear（全結合層）レイヤーは 2次元のテンソルしか受け付けないため、Flat

ten を用いて形状を [バッチサイズ, 3*32*32] に変換します。Linear は、Linear(入
力チャンネル数,出力チャンネル数)という引数を取ります。ここでは 3*32*32（=3072）
チャンネル入力、32チャンネル出力のレイヤーを生成します。次に活性化関数として Re

LUを挿入します。PyTorchでは、活性化関数は Linearに含まれていませんので別途挿
入する必要があります。最後に、32チャンネル入力、（10クラス分類なので）10チャン
ネル出力の Linearを挿入しています。

▼リスト 2.2 Sequential を使わないモデル定義の例

from torch.nn import *
class M(Module):

def __init__(self):
super().__init__()
self.conv1 = Conv2d(3, 32, 3)
self.relu1 = ReLU()
self.conv2 = Conv2d(32, 64, 3)

def forward(self, x):
h = self.conv1(x)
h = self.relu1(h)
return self.conv2(h)

def m():
return M()

2.2 正解率 30%以上: 最短のコード
▼リスト 2.3 最短のコード: 32.65%, 67 文字

from torch.nn import*
m=lambda:Sequential(Flatten(),LazyLinear(10))

まずはできるだけモデルを単純化し、正解率を問わない、最短と思われるコードをリス
ト 2.3に示します。モデルの構造は、全結合 1層のみの線形モデルです。学習させてみた
ところ、正解率 32.65%で文字数 67でした。まず、import *のスペースは不要で、imp

ort*とすることが可能です。これで 1 文字削減できます。改行を; に置換可能な場合が
ありますが、改行文字を 1 文字として数えているため効果はありません。ルール上、モ
ジュールオブジェクトを返す関数 mを定義する必要がありますが、これを関数定義文 def

m():\n xxxとする代わりにラムダ式を使用して m=lambda:xxxとすることができます。

11

第 2章コード解説

1文字の削減となります。ただし、ラムダ「式」のため、関数内で代入文を使えなくなり
ます。そして、Linear(3072,10)の代わりに LazyLinear(10)を用います。LazyLine

arは入力チャンネル数の記載を省略可能とする、実験的機能です。文字数としては、302

7,の 5文字が減って Lazyの 4文字が増えます。合計で 1文字の削減となります。もし
入力チャンネル数が 3桁（999以下）ならこれで削減することはできないということにな
ります。なお、Flatten は省略すると Linear に 4 次元のテンソルが入力されて実行時
エラーとなりますので削減できません。何か抜け道がないか、気になるところです。

2.3 正解率 40%以上: 複数レイヤーの導入
▼リスト 2.4 複数レイヤーコード: 44.43%, 83 文字

from torch.nn import*
L=LazyLinear
m=lambda:Sequential(Flatten(),L(99),ELU(),L(10))

次は、正解率 40% 以上の部門で最短のコードをリスト 2.4 に示します。線形モデル
では流石に精度が低いため、2 層以上のモデルが必要となります。中間層 99 チャン
ネルの 2 層モデルで 40% 以上を達成することができました。LazyLinear を 2 回使
いたいので、変数 L に代入します。LazyLinearLazyLinear の 20 文字の代わりに、
L=LazyLinear\nLL の 15 文字となり 5 文字の削減となります。2 つの全結合層の間
には非線形の活性化関数が必要です。もし活性化関数がないと、2 連続の行列積とな
りますが、これは 1 つの行列積と等価となり線形モデルと変わりません。深層学習
が最初に流行した際の活性化関数は ReLU(ReLU(x) = max(x, 0)) でしたが、さまざ
まな亜種が提案されています。そのうち PyTorch で文字数最短は ELU です。これは、
ELU(x) = x (if x > 0), exp(x) − 1(otherwise)で表されます。中間層のチャンネル数が
99なのは、2文字でできるだけ大きなパラメータ数を得るためです。普通は 32、256な
ど 2の冪乗を使いますが、DLCG特有の制約で珍しい数値が出現しています。

2.4 正解率 50%以上: 畳み込みの導入
▼リスト 2.5 畳み込みコード: 52.76%, 88 文字

from torch.nn import*
m=lambda:Sequential(Conv2d(3,9,3),ReLU(),Flatten(),LazyLinear(10))

12

2.5 正解率 70%以上: ループの導入

正解率 50%以上の部門で最短のコードをリスト 2.5に示します。線形モデル 2層では
実現が困難なため、ここで畳み込み層を導入しました。画像に対する畳み込みは Conv2d

クラスで実現されます。引数は、Conv2d(入力チャンネル,出力チャンネル,カーネル幅,

ストライド=1,パディング=0,...) となります。ストライド以降の引数は省略可能です。
正解率 50%以上という条件であれば、畳み込み層の出力チャンネル数は 9チャンネルで
実現可能でした。60%以上とするにはチャンネル数 2桁が必要でした。その場合のコー
ド例をリスト 2.6に示します。1文字の増加で精度が 8ポイント改善するというのもコー
ドゴルフ的には奇妙な感じですが、ハイパーパラメータの性質上仕方ありません。活性化
関数では ELUが最短ではあるのですが、正解率が低いという問題があり、ReLUを使用し
ています。ELU では入力値が 0 付近の場合にほぼ恒等関数となるため、長い学習時間を
とって非線形性が出るような領域まで使われるようにする必要があるのかもしれません。

▼リスト 2.6 畳み込みコードチャンネル数 99: 60.78%, 89 文字

from torch.nn import*
m=lambda:Sequential(Conv2d(3,99,3),ReLU(),Flatten(),LazyLinear(10))

2.5 正解率 70%以上: ループの導入

▼リスト 2.7
ループのあるコード: 74.69%, 119文字（→は紙面上折り返しているが、コード上は
前の行から継続していることを示す）

from torch.nn import*
S=Sequential
m=lambda:S(*[S(LazyConv2d(99,3,i),BatchNorm2d(99),ReLU())for i in[1,2]*3],
→Flatten())

最後に、正解率 70% 以上の部門です。コードをリスト 2.7 に示します。2 層のモデル
では不十分なため、3層以上のモデルをできるだけ短いコードで定義します。まずは文法
を解説します。複雑になっているため、1 つずつ解きほぐしていきます。まず、Sequen

tialが 2回使われるため、変数に代入しています。[f(i) for i in X]という構文で
すが、リスト内包表記です。Xにはリスト等の列挙可能なオブジェクトを与えます。例え
ば、[f(i) for i in [1,3,5]]は、[f(1), f(3), f(5)]という記述と等価です。関
数 fに対して異なる引数を与えて得た結果を、リストとして取得することができます。[

13

第 2章コード解説

1,2]*3 は、リストに対する掛け算で、繰り返しを意味します。すなわち、[1,2]*3==[

1,2,1,2,1,2]です。リスト内包表記では、通常 forの前、inの後ろにはスペースが必
要ですが、変数名として使えない文字と連続する場合はスペースを省略してもエラーとな
りません。これにより、...)for i in[...というようにスペースを 2文字分削減でき
ます。次に、リストの前の*ですが、リストの要素を関数の引数として展開する役割です。
例えば、f(*[1,3,5])は f(1,3,5)と等価となります。Sequentialは、可変長の引数
としてレイヤーを受け取るため、この構文を使用してリスト内包表記で動的生成したレイ
ヤーの列を与えます。これらの文法を展開した結果はリスト 2.9のようになります。結局
のところ、畳み込み 6層のモデルということになります。
次に、深層学習のモデルとしてのテクニックを解説します。ここでは新たに 2つのクラ
ス LazyConv2dと BatchNorm2dが登場しています。BatchNorm2dはバッチ正規化層で、
入力の各チャンネルについて、ミニバッチ内の値の平均を 0、分散を 1となるようアフィ
ン変換することで学習を促進するものです。本書のルールではこれがないと学習イテレー
ション数に対する正解率の向上速度が低く、所定イテレーション数内に正解率 70%を達
成できませんでした。文字数が長いですが採用せざるを得ません。チャンネル数指定不要
の LazyBatchNorm2dもありますが、このコードでは文字数削減に寄与しません。LazyC

onv2dは、入力チャンネル数を省略できる畳み込み層です。畳み込み層の入力チャンネル
数は 3桁以下なので、Lazyよりもチャンネル数を明示的に記述して 999,とするほうが
短いのですが、入力チャンネル数が最初の層では 3なのに対し他の層では 99となり、条
件分岐が必要となります。ループ変数 jが仮に 0,1,2,3...となる場合、[3,99][j>0]

のように場合分けを短く記述することはできなくはないですが、Lazyを用いる方がより
短いです。最後に LazyConv2dの引数ですが、LazyConv2d(出力チャンネル,カーネル幅
,ストライド)となります。ストライド指定の別の実装方法として、j%2+1 for j in ra

nge(6)も考えられますが、j for j in[1,2]*3の方が短いです。ストライドが 1と 2
に交互に設定されている点が重要です。ストライドは、出力のピクセルが 1 つ移動する
たびに入力に対する畳み込みの窓の移動距離を表すものです。畳み込み層の画像の出力サ
イズの計算式は (入力ピクセル幅 + 2 ×パディング −カーネル幅)/ストライド + 1 のよ
うになります。ストライドを 1→ 2→ 1→ 2→ 1→ 2の順にすることで、画像サイズが
32→ 30→ 14→ 12→ 5→ 3→ 1と変化し、ちょうどピクセル数が 1になるところがポ
イントです。最後の畳み込み層の出力テンソルの形状は [バッチサイズ, 99, 1, 1] と
なります。これを Flattenに入力すると、[バッチサイズ, 99]の出力が得られます。出
力は 10クラス分類なので [バッチサイズ, 10]となるのが正しいのですが、学習のため
のコードはリスト 2.8のようになっており、実は過剰なチャンネルがあってもエラーなく
動きます。11個目以降のクラスは学習データに出現しないので、負の無限大を出力する
ように学習が進んでいくと考えられます。逆にクラスが 10個あるのに 9チャンネル以下

14

2.5 正解率 70%以上: ループの導入

の出力を与えると実行時エラーになりますので、精度不問のコードで 10チャンネルの出
力のところを 9チャンネルに減らしてコードを短くすることには使えません。画像サイズ
が 1になることは重要で、もしサイズが 2となって [バッチサイズ, 99, 2, 2]という
出力となると、これを Flattenに与えた結果が [バッチサイズ, 396]となります。チャ
ンネル数が過剰という点だけでは画像サイズが 1ピクセルの場合と変わりませんが、[バ
ッチサイズ, 0, 0, 0]がクラス 0に対応、[バッチサイズ, 0, 0, 1]がクラス 1に対
応ということになります。しかしこれはチャンネル方向ではなく空間方向の別ピクセルが
別のクラスに対応するという正しくない構造となり、うまく学習できません。画像サイズ
をうまく 1ピクセルになるように調節することにより、最後の全結合層を省略することが
できています。また、通常のモデルでは最後の畳み込み層や全結合層には活性化関数を用
いませんが、リスト内包表記の都合で最終層だけ場合分けすることができません。これで
も学習が進むので、DLCG特有のテクニックとして使うことができます。簡潔さの裏に、
深層学習初心者には決してお勧めできない黒魔術が入っておりますのでご注意ください。
なお、チャンネル数を 2 桁の 99 より増加させると、リスト 2.10 のように若干正解率
が向上します。一方、他のモデル構造も検討しましたが、今回のルールで正解率 80%以
上を実現するモデルは残念ながら見つかりませんでした。分岐があるモデル構造として
Residual構造などを試しましたが、エポック数を 5に固定した状態では正解率が高くな
りませんでした。数十分かけて学習を進めれば本書で掲載したモデルでも 80%以上の正
解率は得られますし、より複雑なモデルで 90%以上の正解率を目指すことも可能ではあ
ります*1。しかし細かいテクニックを重ねてコードを短くするゲームとして遊ぶには計算
時間がかかりすぎますので、ここまでとしました。筆者が開発したコードは以上となりま
す。深層学習という課題上、ライブラリに定義されたクラス名の記述が避けられず、また
大量のクラスを複雑に組み合わせることが最適解とはならなかったため、コードを見れば
何をしているかはわかりやすい解答となりました。DLCGに興味を持ってくださった方
が、従来のコードゴルフのような、コードを見ても何をやってるかわからないような奇
怪なコードが最適解となるような面白い課題設定を開発してくれることを期待しており
ます。

*1 99% 以上の正解率となるモデルが紹介されています。 https://paperswithcode.com/sota/image-
classification-on-cifar-10

15

第 2章コード解説

▼リスト 2.8
損失を計算するコード（self.model がプレイヤーが記述した関数で生成したモ
デル）

x, y = batch
logits = F.log_softmax(self.model(x), dim=1)
loss = F.nll_loss(logits, y)

▼リスト 2.9 文法上短縮したものを展開したバージョン

from torch.nn import*
def m():

return Sequential(
Sequential(LazyConv2d(99,3,1),BatchNorm2d(99),ReLU()),
Sequential(LazyConv2d(99,3,2),BatchNorm2d(99),ReLU()),
Sequential(LazyConv2d(99,3,1),BatchNorm2d(99),ReLU()),
Sequential(LazyConv2d(99,3,2),BatchNorm2d(99),ReLU()),
Sequential(LazyConv2d(99,3,1),BatchNorm2d(99),ReLU()),
Sequential(LazyConv2d(99,3,2),BatchNorm2d(99),ReLU()),
Flatten()

)

▼リスト 2.10 ループのあるコード（チャンネル数 256）: 75.16%, 121 文字

from torch.nn import*
S=Sequential
m=lambda:S(*[S(LazyConv2d(256,3,i),BatchNorm2d(256),ReLU())for i in[1,2]*3],
→Flatten())

2.6 ConvMixerのテクニック
今回筆者が定義したルールに対してはモデルが複雑すぎて活用できませんでしたが、

DLCG のアイデア元となった ConvMixer のコードを短くすることに使われたテクニッ
クについて、筆者なりに解釈して解説します。
▼リスト 2.11 ConvMixerのコード（再掲）

def ConvMixr(h,d,k,p,n):
S,C,A=Sequential,Conv2d,lambda x:S(x,GELU(),BatchNorm2d(h))
R=type('',(S,),{'forward':lambda s,x:s[0](x)+x})
return S(A(C(3,h,p,p)),*[S(R(A(C(h,h,k,groups=h,padding=k//2))),A(C(h,h,1))) for
→ i in range(d)],AdaptiveAvgPool2d((1,1)),Flatten(),Linear(h,n))

16

2.6 ConvMixerのテクニック

A=lambda x:S(x,GELU(),BatchNorm2d(h)) は、ラムダ式定義です。引数 x には例
えば Conv2d()が入ります。S=Sequentialなので、xに続いて、GELU()、BatchNorm2

d()が実行されるようなモジュールオブジェクトが生成されることになります。つまり、
畳み込みなどの処理に活性化関数を追加する作用を持ちます。
次の行は見慣れない構文が用いられています。R=type(’’,(S,),{’forward’:lambd

a s,x:s[0](x)+x})は、Residual構造を作るためのクラス定義となります。組み込み関
数 typeは、引数が 1つのときと 3つ以上のときで全く役割が異なります。今回は、typ

e(name, bases, dict, **kwds)という引数になり、クラス定義を動的に実行します。
nameはクラス名ですが空文字列でもエラーになりません。basesは、基底クラスをタプ
ルで指定します。ここでは、S=Sequentialが指定されています。dictは、クラスのメ
ソッドを定義します。ここでは、forwardメソッドをラムダ式の形で与えています。lam

bda s,x:s[0](x)+xを解説します。引数 sは、普通 selfと書かれるもので、クラスの
インスタンスを指します。xが通常の引数で、テンソルを受け取ります。テンソル xをあ
るレイヤーに与えた出力 s[0](x) と、元々の x を足したものを返すことで Residual 構
造を実現します。s[0]はどこから来るのでしょうか。Sequentialクラスは、コンスト
ラクタの引数を、配列のインデックス指定のように取り出すことができます。例えば、m

=Sequential(Conv2d(),ReLU())と定義したとき、m[0]==Conv2d()、m[1]==ReLU()

のようになります。クラス R は Sequential を継承したものであり、コンストラクタは
上書きしていないため、R(Conv2d())というコンストラクタ呼び出しに対して、そのメ
ソッド内では self[0]で Conv2d()を取り出すことができます。結局、forward(x)メ
ソッドでは、クラス Rのコンストラクタに与えたレイヤーオブジェクトに xを与えて呼び
出した結果と、xを足した結果を返すという処理が行われることになります。
最後の行は前の章で解説したテクニックと同じで、リスト内包表記による深いモデルの
定義が行われています。なお、) for i in range(d)] は、)for i in[0]*d] と短縮
できます。また、AdaptiveAvgPool2d((1,1))は AdaptiveAvgPool2d(1)に短縮でき
ます。
筆者はコードゴルフのために、通常あり得ない構造のモデルを定義しました。一方でこ
の論文のように、あくまで実用性のあるモデルを短く書き換えるという遊びも考えられま
すので、気が向いたら考えてみてはいかがでしょうか。

17

付録 A

TensorFlowへの移植

PyTorchと並び著名な深層学習フレームワークとして、TensorFlowがあります。筆者
は PyTorchを使うことがほとんどですが、TensorFlowでも DLCGを行うとどんな違い
があるか検証しました。
結論から言えば、PyTorchを利用する場合と解答となるモデルそのものは変わりません
でした。畳み込み層のほうが全結合層より短く書けるというような変化はないようです。

A.1 環境構築
環境構築は PyTorchより簡単です。学習ループを自前で書いたりライブラリを入れな

くても model.fit()を呼ぶだけで自動的にループを回してくれます。そのため、コード
の長さの計測機能を除けば、リスト A.1だけで学習・評価ができます。データオーグメン
テーションがないなど、PyTorch と若干違うため同じモデル構造でも正解率に若干の差
があります。

▼リスト A.1 TensorFlowでの学習コード

import tensorflow as tf
tf.random.set_seed(1) # 乱数固定
データセット読み込み
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
モデル構築
model = m() # プレイヤーが定義するモデル
学習設定
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',

loss=loss_fn,
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5, batch_size=256)

18

A.2 PyTorchとの相違点

正解率の評価
test_loss, test_acc = model.evaluate(x_test, y_test)

A.2 PyTorchとの相違点
実際のコードを示しながら、PyTorchとの違いを解説します。
最初に、TensorFlowでの通常のモデル定義コードをリスト A.2に示します。Sequent

ialや Flattenは PyTorchとほぼ同じです。ただし、Sequentialは可変長引数ではな
くレイヤーのリストを引数にとります。PyTorchでの Linearは Denseに変わり、入力
チャンネル数は不要となります。すなわち Denseは PyTorchの LazyLinear相当です。
もちろん、ResNetのような分岐があるモデルを定義するための、クラスを用いたモデル
定義方法もありますが明らかにコード量が増大します（A.3節で触れます）。
画像データのデータ配置が、PyTorchでは [バッチサイズ, チャンネル, 幅, 高さ]な
のに対し、TensorFlowではデフォルトでは [バッチサイズ, 幅, 高さ, チャンネル]と
なっています。この違いは学習済みモデルを移植したり Reshapeを行ったりする場合に
影響が出るものの、本書の範囲では影響ありませんでした。

▼リスト A.2 一般的なモデル定義

import tensorflow as tf
def m():

return tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)

])

正解率を問わない最短のコードをリスト A.3に示します。PyTorchでは Sequential

と Flattenは同じモジュール（torch.nn）からインポートできたのですが、TensorFlow
では、tf.keras.models.Sequential と tf.keras.layers.Flatten というように
別々のモジュールからインポートする必要があります。ここで、tf.keras.models.Seq

uentialは tf.keras.Sequentialとしてもインポートできるため、from tensorflow

.keras import*で Sequentialをインポートしつつ、同時に layersに tf.keras.la

yersがインポートされるようにするのが最短と考えれます。インポートの煩雑さが影響
して、コードの長さは PyTorchの 67文字から 85文字に増加してしまいました。

19

付録 A TensorFlowへの移植

▼リスト A.3 最短のコード: 38.08%, 85 文字

from tensorflow.keras import*
L=layers
m=lambda:Sequential([L.Flatten(),L.Dense(10)])

次に、複数の全結合層を利用するコードをリスト A.4に示します。TensorFlowでの活
性化関数は、Dense へのパラメータ引数を用いて Dense(99,activation=’elu’) と記
述することが可能ですが、それよりも単体の ELUクラスを用いるほうが短くなります。

▼リスト A.4 複数レイヤーコード: 43.41%, 103 文字

from tensorflow.keras import*
L=layers
D=L.Dense
m=lambda:Sequential([L.Flatten(),D(99),L.ELU(),D(10)])

畳み込みを用いたコードをリスト A.5、リスト A.6 に示します。畳み込みは Conv2D

で、引数は Conv2D(filters, kernel_size, strides=(1,1), ...)です。入力チャ
ンネル数は不要です。データオーグメンテーションの違い等により（過学習気味）、チャ
ンネル数 99では正解率 60%に達しなかったためチャンネル数が 3桁になっています。

▼リスト A.5 畳み込みコード: 51.93%, 108 文字

from tensorflow.keras import*
L=layers
m=lambda:Sequential([L.Conv2D(9,3),L.Flatten(),L.ReLU(),L.Dense(10)])

▼リスト A.6 畳み込みコードチャンネル数 512: 60.22%, 110 文字

from tensorflow.keras import*
L=layers
m=lambda:Sequential([L.Conv2D(512,3),L.Flatten(),L.ReLU(),L.Dense(10)])

最後に、ループを導入した深いモデルをリスト A.7に示します。PyTorchと同様、出
力チャンネル数が 10 より大きくてもエラーになりません。チャンネル数 68 は、正解率
70% 以上となるようパラメータの探索を行った結果です。Sequential の引数は可変長
引数ではなくリストなので、リストの結合を用いて最後の Flattenを付加しています。

20

A.3 Residual構造を記述する

▼リスト A.7 ループのあるコード: 70.26%, 148 文字

from tensorflow.keras import*
L=layers
S=Sequential
m=lambda:S([S([L.Conv2D(68,3,i),L.BatchNormalization(),L.ReLU()])for i in[1,2]*3]
→+[L.Flatten()])

A.3 Residual構造を記述する
PyTorchで書かれた ConvMixerの解説で登場した、Residual構造 (y = f(x) + x)を

TensorFlowでも短く書いてみます。TensorFlowで分岐があるモデルを記述する方法は
2つあり、Functional APIによる方法と、サブクラス化による方法と呼ばれます。
まず、Functional APIでのモデル記述例をリスト A.8に示します。Functional APIで
は、モデルの入力を表す変数を Inputで生成し、これをレイヤーオブジェクトに渡して
その出力を表す変数を順次生成していくことでモデルの構造を表します。最後に、モデル
全体の入出力となる変数を Model関数に渡すことで、モデルが完成します。変数は複数
回使用できるので、分岐を表現することができます。l=ReLU(k)+kと記述すれば、非常
にシンプルに Residual構造が表現できます。Residualレイヤーを定義するのではなく、
モデル定義文の中で 2回同じ変数を使うことで表現します。レイヤー同士のつながりを表
す変数を明示的に扱えることがシンプルさの要因です。ただし、変数を明示的に代入して
取り回さないといけないため代入文が必須で、リスト内包表記（＝式）で深いモデルを表
現することが難しくなります。DLCG的には使いづらいでしょう。

▼リスト A.8 Functional API でのモデル記述例

from tensorflow.keras import *
from tensorflow.keras.layers import *
def m():

i=Input([32,32,3])
j=Flatten()(i)
k=Dense(128)(j)
l=ReLU()(k)
m=Dense(10)(l)
return Model(i,m)

最後に最も柔軟性の高いモデル定義方法であるサブクラス化による方法を示します。リ
スト A.9に Residualレイヤーの記述例を示します。PyTorchのときと考え方は同じで、
Sequentialクラスを継承し、レイヤー実行時に呼び出される callメソッドをオーバー

21

付録 A TensorFlowへの移植

ライドして Residual構造を実装します。PyTorchにおける forwardを callに、self[

0]を self.layers[0]に置換した形となります。

▼リスト A.9 サブクラス化での Residual 記述例

from tensorflow.keras import *
from tensorflow.keras.layers import *
class Residual(Sequential):

def call(self, inputs):
return self.layers[0](inputs) + inputs

使用例
r = Residual([ReLU()])
x = tf.constant([1.0, -1.0])
r(x)
=> [2., -1.]

DLCGらしく、このコードを短く記述した結果をリスト A.10に示します。type関数
を利用するのは PyTorchと同じなのですが、TensorFlowでは余分な記述が必要でした。
第 1引数’x’ですが、空文字列にすると内部のコードでエラーが発生します。クラス名の
1文字目が’_’かどうかで挙動を変える機構があり、1文字目がないため IndexErrorが
生じます。ラムダ式の引数には、キーワード引数を受け取る**d が必要でした。モデル
の実行が学習中か推論中かを示す training キーワード引数（Dropout 等の挙動が変わ
る）が渡されるため、これを受け取らないとエラーになります。しかし、素直な定義で
あるリスト A.9ではキーワード引数を定義しなくてもエラーになりません。この理由は、
TensorFlow内部の実装がメソッドが受け取る引数を列挙し、定義に合わせて適切な引数
を渡すように実装されているためです。しかしながらラムダ式でメソッドを定義するこ
とが想定されていないのか、判定が間違ってしまい{’call’:lambda s,x:s.layers[0]

(x)+x}という定義に対して trainingキーワード引数を与えてしまいエラーになってい
ます。

▼リスト A.10 短縮されたサブクラス化での Residual 記述例

from tensorflow.keras import *
from tensorflow.keras.layers import *
R=type('x',(Sequential,),{'call':lambda s,x,**d:s.layers[0](x)+x})

以上のように、TensorFlowでも PyTorchとほぼ同じように DLCGを遊ぶことができ
ることがわかりました。"tensorflow.keras"が"torch.nn"より長いことや、気を利か
せて挙動を変える機構の誤判定等で、PyTorch よりコードが長くなってしまう傾向があ
ることがわかりました。

22

あとがき

当サークル初の、とても軽い読み物を刊行してみました。深層学習を実用目的でやる以
外にも、知識を使っていろんな遊び方ができることを示したいと思って書きました。メイ
ンシリーズであるポケモンバトル AI本が長らく出せておらず、技術書典 12が開催され
るということで軽いテーマで一冊本を書いてみようというモチベーションからテーマ選定
を行いました。11月には電子書籍用の原稿ができていたのですが、技術書典の「後から印
刷」（会期後に注文があった冊数だけ物理本を印刷できる）の大幅割引キャンペーンが告
知されたので急遽物理本も出すことにしました。元の原稿が印刷可能なページ数の下限に
達しておらず、内容を増やす必要に迫られ思いのほか忙しくなってしまいました。
表紙のイラストは、ヤマブキちゃん（仮）が旅行帰りにお土産がスーツケースに入りき
らなくて困っているというシチュエーションを描きました。深層学習のモデル定義を無理
やり圧縮するという本書のテーマを表現しています。ヤマブキちゃんというのはヤマブキ
計算所のオリジナルキャラで、筆者を代弁させる役割を期待しています。キャラクターデ
ザインとかさっぱりわからないのですが…
私がイラストを描き始めたのは 2021年に入ってからで、下手の横好きながら楽しんで

います。以下のようなきっかけがあって、自作の同人誌に自作のイラストを載せるに至り
ました。

• 200X年 漫画「ひだまりスケッチ」の沙英というキャラクターに「美術を学んでい
るのは自作小説に自分で挿絵を描くため」という設定があり、なんとなく気に留
める

• 2018年 初の同人誌を刊行。表紙はWordで適当に作ったが、周囲のサークルの本
を見ていると綺麗な表紙が多くてうらやましくなる

• 2020 年 9 月発売の某恋愛アドベンチャーゲームで、神絵師であるヒロインを手
伝って同人誌即売会に出るというシナリオを見て、イラストが描きたくなる

• 2021年 親戚の子供からの年賀状に自作の漫画絵が描かれており、謎の対抗心を燃
やし、イラストの勉強に着手

23

Deep Learning Code Golfやってみた

2022年 1月 22日　技術書典 12版 v1.0.0
2022年 1月 23日　内容修正 (「再現性について」を改良) v1.0.1

著　者 select766
発行所 ヤマブキ計算所

　

(C) 2022 select766 （刊行から 3年経過後より CC-BY-SA 3.0ライセンスで利用可能）

24

	まえがき
	第1章 イントロダクション
	1.1 Deep Learning Code Golfとは
	1.2 ルール設計と実行環境
	1.2.1 深層学習を用いて解くべき課題の設定
	1.2.2 プレイヤーが記述するコードの範囲
	1.2.3 実行時間
	1.2.4 テスト用データに対する最適化
	1.2.5 実行環境
	1.2.6 ルールのまとめ
	1.2.7 再現性について

	第2章 コード解説
	2.1 ベースライン
	2.2 正解率30%以上: 最短のコード
	2.3 正解率40%以上: 複数レイヤーの導入
	2.4 正解率50%以上: 畳み込みの導入
	2.5 正解率70%以上: ループの導入
	2.6 ConvMixerのテクニック

	付録A TensorFlowへの移植
	A.1 環境構築
	A.2 PyTorchとの相違点
	A.3 Residual構造を記述する

	あとがき

