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ERB7D, BEDOI—- RV ZIFEHFRELRI - FIEABRTEERATLEDY., FEFE
WRHE U 72 BB 2 B L AW UEFENT S,

1JZ k1 Deep Learning Code Golf D f#ZEHAl

from torch.nn import*

S=Sequential

m=lambda:S (x [S(LazyConv2d(99,3,i) ,BatchNorm2d (99) ,ReLU())for i in[1,2]1%3],
—Flatten())
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o Python OFEA %
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1.1 Deep Learning Code Golf & &

Deep Learning Code Golf i3, EHIMER L -FET, FEEFAEOETNVEREZTE
ERIENY —Ra—=FTRHETZ) WIS F—LTT, ZDF—L2EBEZZonT
. FEEEOH L WEF RS ConvMixer 12K T 25 T, FIEOMER I % Tk
THDDOBFETELT2ROXFUTTERTEL0WHI3BEa—F (VA1) 2
Twitter L TFEHEE L RoTWeZH TS, MXEEREIa-FTORIAKZFEIT I Z
HIELLTWADUITIEDD EEAD, AZFBOEZ - F2ELTE2ZBERES — L4
L7265 R20EERFF 7D TERTLZ2ICLE L,

ConvMixer ®J— K (—=I3#EEmLIFDIEL TWEH, OI— R EIZFEDOITH S#EEL
DRM11 TwaZe%Ry)

def ConvMixr(h,d,k,p,n):
S,C,A=Sequential,Conv2d,lambda x:S(x,GELU(),BatchNorm2d(h))
R=type('',(S,),{'forward' :lambda s,x:s[0] (x)+x})
return S(A(C(3,h,p,p)),*[S(R(A(C(h,h,k,groups=h,padding=k//2))),A(C(h,h,1))) for
— i in range(d)],AdaptiveAvgPool2d((1,1)),Flatten(),Linear(h,n))

Deep Learning Code Golf (LT DLCG) DIitt2o7Did, MATEDFH STV
a—Fran7 (Code Golf) 2WHH—LTF, a—FINL7F Ya—ba—Fe s
BhEd, a— a7t HEORELML Tur Ik, TELRFE VY —Ra—
FTRET 275 —LTT, I—RFRarT7rW0WH3EMHRE, AR—=—YDILTD XS5 ITHNT
B (LF) TI—AT5Ie»b2F60E5TT, a— FaL 7 THRIFEDH

*1 Patches Are All You Need? (JERAacRAETPOoRMXT. EAH)
https://openreview.net/forum?id=TVHS5Y4dNvM
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L TCEAZ DL, FizzBuzz BT, FizzBuzz BEX . T1 205 100 T TOHREH S
B, 727 L. 3 DERDIGER Fizz, 5 OEHDEEZ Buzz, 3 OfEED»D 5 OEHK
DFEN FizzBuzz t 18 &) EWHMETTS, ZOME% Python FFECTHEICMHE <
I—FiE VAMI2DESZRDET, dBAAMHEDOT0 ST I VI TIEZNTIEMR
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B3 o3. HLEEORDIEENE T, SO ANERIIN LU THREHNCIEMRR L —E
PEThhiF e &2, BEEMICEANEBRICH L TED XS RliNhz T 2013 —EIZ
EELRVOPIEETT, EMELRD 2ERIAEBAROHE L XDIFD. ETLOME
PEFROFERLITHEINET, EFLOBEICHHERE-E2% 2 25 DLCG D
2= — 7 E T, TERRHY M EoEF L 2itdd k) WO REICRDZT, dFED
WHHRET AL RENDED TIERERMEL R L WS EADHH ETDT, —ED
IEfRRZHR L DD, ETVOMELZHBL LD a— FLN\LOEEFEEZFELILED
5 ICHISED S EENE T,



1.1 Deep Learning Code Golf & i

JX + 1.2 FizzBuzz OIE#RN A ERE

for i in range(1, 101):

if 1 % 3==0and i % 5 == 0:
print ("FizzBuzz")

elif i % 3 == 0:
print ("Fizz")

elif i % 5 == 0:
print ("Buzz")

else:
print (i)

UZX b+ 1.3 AELIR—ZHIR

for i in range(1,101):
if i%3==0 and 1i%5==0:
print ("FizzBuzz")
elif i%3==0:
print ("Fizz")
elif i)5==0:
print ("Buzz")
else:
print (i)

DZM14 OPyvI%z8R

for i in range(1,101):
if 1%15==0:

print ("FizzBuzz")
elif i%3==0:

print ("Fizz")

elif i)5==0:

print ("Buzz")

else:

print (i)

JZ k1.5 FizzBuzz DR EI—F (59bytes) *?

for i in range(100) :print(i%3//2*"Fizz"+i)5//4*"Buzz"or-~i)

*2 https://qiita.com/ymg_ aq/items/b8e5d26035180bc8797e#python3-59-bytes
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1.2 JL—I)LEEt ERITIRIR

Deep Learning Code Golf # 4 — A ¥ L THERICH =D, FRESCZ OZENREZ | 25
ERRETT, ZDDDNL—LEEZE LT

1.21 FRFEBZAVWTEINEIREDRE

FEFPEZHCTHRIEEL LTI, EigZz At L. 10 BEOYED 5 b rhh
BoTWahERHB L THOET 2EGOHEBEERS 2 LE L, &b BRI,
CIFAR-10 ¥— &+t v M3 Z2HVWE T, BHfIZ 32 €270 71Hh5— (RGB D
3F v ) T, BEINEWERIE 10 BE OMTH. BEIH, &) T3, ZEHHE
B35 HK. 7 A NHERS 1 MDD £3, EREL L TEERDZ, ERkahb
ETNVOEMEILFHE IR MTT, HEDEHOAMBEL LT HWSHR S MNIST
T—Xty MIFESTET, M THMAMEDET L THIEME 9% BEONTLE
W, ETILVERBDTRICE - TENDOZFERA, HIZ. EFHIGEVWHEE LTHWANS
ImageNet 7— &t v MIEMT F T, ¥EVHOERMB I IERTE T, 2H 2
DRV ERDOXFRA, BEFITE > TERMTEN DL L WS EER L I2F —
Xty bEBRELE L, WHEORLZZHEY LTI, —2—XEHE (FEHEDY) 2 A
HLUTHEDOY v YLDOWTHICHEY T EINCOET 2 &5y —F v 2UERER YD
EZoNET, SBEC I THYARETLOMENKEL B 32D, HAVEELZE X
THBLZDDHELWTL &9,

Kz, EEKRZIIINC, F—a e LTHRILI B2 -0DFE50E2ERLE T,

122 TLAVv—HEdd 3 I— FDEEHE

BB E 2 FATT 5123, ETFAVDERE T TR, 287 — X ORILEERE, +7
TARATFREVWL ODPDOENNEAL D FT, WINOBMED ERRICHELE X F
T, BAREXAPEZIONE T, F—2 2 L THEAIRETZBR T LRVWE 512, 7
LAY =23 s N EHEH e, B U CEE SN L 5 2 28 % 00 2 REL D
hET, ZDD, LAY —RT 2D, ETVERETO>EBn 2L, 20D
BHEEMOH T EETAA T2 v 2RTHDELET,

a—FOEXIF, XFEHTHHILELE, 7L 7 7Ry FTHEFTH 1 XFIZHT
FLET, BITD 1 XFE A ET, a— FORE - KEOSITXFIIEHRL 3,

*3 Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.
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1.2.3 RTHHE

TLA Y —DENa— FTERINDETANFTEDEMREERTE 208 5 05T
filig 212i%, EBICEERZITO5DERD D ET, FEEBIFHEIZ M IEL. &btk
GPU Z#8 Lzt B CTHHI 2228500 £35, StERENSPLDTEL 7 —
L LTHERBW2D, BOLINCRE T T2 eREE LW e EZIONE T, RibT2E
TRIBICBWT, SHNREMSDETFTAN 1 EETHEETEX5%7 Xty M K&
QB — T (R 78 ZHEBELZ L,

IhEizTHife LT, 5 =Ry 7 (FEHBEREHEET MTRALT, 74N
TRA—=REEHTHH A4 7% 50ITS) FHRIVLIWSEF LELL, 72720, €
FILDEHEX T X — X ERICHZRT TORND T, BRCEELR D2 ERT
UXVL S THEREMHEP RS R DS E T, HEMK. RENOESVEHRE T VIE
WKy ZETREDF D EREIEL LRV DL, BARRECEZ RO 0ne
EZONET,

1.24 FRAMAT—RICHTIREL

B E IRk, 7AMVHO T =X EKRADT—XTHD, 77X MVHT— X TOIEMR
BERBELOEEL LTHEIRETEDD ¥ A, ETAD¥EEANT 4 — KN 7557
DOFAHT— X T A MVHT—RETPNTOWEZONEHETT, LrLlAEnsr—ok
LTINS DIEEEIHAEICTHET2DIH L Wid, TAMNIT— X TOEMENEE S
IR ETADNANR=RI XA =2 HBHEELTHOHEDRVDBDE LET,

1.25 ETRR

BEMEABIUCEINCFHEEL22 75— LTERIZSWTT, AETIE, HE
FERMFIIIESLNLI IV R EDA Y& T 7T 1 77 Python EITIRETH % Google
Colab 2{EH T2 22 2 LE L7z, Python DEHES 4 75 V2 TERBEEEZ1TO DIk
HELAARERDT, EEFE 4771 2 LT PyTorch ZH\W¥ L7, Google Colab
TEWHIRETA VA =L FEATT, 51, ¥HELV-TORRZ BT 2729
PyTorch Lightning 3 X tf Lightning Bolts Z FiWE L7z, 7272 LIN6DT7A4 77V D
AL > TT LAY —DEIARE - FZERBDHD FHA, ETVERDI—FEX
FHle LT OBBUCE R 3 8. ZOXNTFREFBER/REONIET VO IERREHE
W2 XORBEEZRELE L, B, HEFEEZ A 75V & LT Tensorflow Z AW

CHE ORI 2 MNEICHEB L TVWE T, ETREORZ YV —ryay P2 11ITRLE
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Fo e BEICCFIIY LTEFVERT— FEGZ B L, ¥BEIT 5725 ATIEMEY,
I FORSERRLTINET,

() & DeeplearningCodeGolf_cifar10r01_colab.ipynb

B ot axs 0
FRO gmaq)L BE F7 BA SLA0L WL AT EEES 1081

= BR x T3 F +FFERb B v S EE | A
- (1 sl
Q Deep Learning Code Golf from torch.nn import ¥
EFLEEETEI-F daf oie
o return Sequential (Flatten(),Linear (32%32+3,32) ,Rell (], Linear (32,10))
wIYa )
{x} Global seed set to

GPU available: True, used: True

TP available: False, using: 0 TPU cores

IPU available: False, using: 0 IPUs

Downloading hitps:/fwww.cs.toronto.edu/ kriz/cifar-10-python.tar.gz to fconten

= I 1704990727 [00:06<00:00, 32308!

1.1 Google Colab RiETd 1— FEEufl

1.26 IL=IDFrd
Mo LT, UTokoskr—ne Ll

o UTORMRETHFEIBLEBIC, TAMNAF—XTOEMRE X% MU Er7m3a—
R %R X,
— X=10,20,...
o TLAX—DEHRT 23— KDL
— SOV n 2EET B, ETEN2L PyTorch DEY 22— LA 7V <
7 M &iRT,
—mOHNFCTRHRERES 2 —E, 2a— FNTA VY R—+T 3,
o M
—mQ) PRLEEY 2a— ATV 7 ML, dHlis 27 o fIC2EEH 7 — &
WE2%E2TRo720b, 7TAMNHT—XICE D IEMRZFHAELHNT 5,
— F7—X+%t v b: CIFAR-10
— T=RF=TR T =ar:dpx XTI LTIy ELrnay s UK
LEAREE (F 75— LTEHFEHEETIIRWA, CIFARIO ZHW:
B> 7L a— ROk E #K)
— F 77 4 < AY: Adam(1lr=1e-3)



1.2 JL—IL 585t & RITIRIE

- Ny F ¥4 X 256
- TRy 785

1.2.7 BIREICOWT

HEFE T ETART X=X 2T 2885, ETMCE X %7 —XDJEFK
I D EEERIGEVWAHE T, I OENEVWDIANC S, GPU EToiliFlEt
HOFATEFIZHES =R Y = 7 L OLOIFRENRZEFH D H D, Z2REHIT#E LD
MNEETT, AEOFETEETIZV A L6 XX DELBOEEZRAAE Lz, R A—F
V7 V7T TDON=Ya Y TEBEETLZ ZARUEENPESNS LS TL
72o —HCRENESHEEITRMEILTERVED, HEEPHE 2 X5 harREFEET S
WL VWE 2R D 3,

UZXh1.6 BREMZERTIRE

pytorch_lightning.seed_everything(1l, True)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)

AEHERETDIATIVDA—Va 2R IIISRLET, H2BETHEB I a—
RAEICIISERBRIASRED R L T3 720, fFRON—2 a2 U TEEL a— FA#FEZ R WA]
HEMELH D T,

£11 SA4TVON-Y3Y

Python 3.7.12

torch 1.10.04culll
torchvision 0.11.1+cull1l
pytorch__lightning 1.5.1
pl_bolts (lightning-bolts) | 0.4.0
tensorflow ({FE#RCHEA) 2.7.0

FATEREE @ Colab notebook & https://colab.research.google.com/drive/
1KGZFAERNGVAof SCEBnEMf eRENOpWcCUA?usp=sharing I CHIfi L CWE S, £/, &
W/ea— FEHRFETE 594 P ZAEL £ L7, https://dlcodegolf.web.app/ H* 5
7I7RATEXT,


https://colab.research.google.com/drive/1KGZFdERNGVAofSCEBnEMfeRENOpWcCUA?usp=sharing
https://colab.research.google.com/drive/1KGZFdERNGVAofSCEBnEMfeRENOpWcCUA?usp=sharing
https://dlcodegolf.web.app/

F25
11— R g

RETIE, EHEPFERIC DLCG KD HATRAELZza— e, 2ZTHWET 2
=y 7 RMREH LT,

21 R=XA51Y
YRR 21 A—254>0—R:43.41%, 104 XF

from torch.nn import *
def m():
return Sequential (Flatten() ,Linear (32*32%3,32) ,ReLU(),Linear(32,10))

FTWEa—-FRELSTE77=v 7 2HVIHID, mdbEARRZa—-FEUR 21
WRLET, Ui, a2 » R 52ETLTT, AFDL—LTIE, a—FHT
B8 nZERL., INEHEITTIL, —a—F3xy N2 OETIEFEEDZIET
MEBERUFEEINEZNRTRA—REAUETREY 2 —LF 7Y =7 b (torch.nn.Modu
le DY 77 7 R) BERIND XDICELET ZHEHNDD 3, PyTorch TEY 2—b
F7Y 2l PEERT BT, torch.nn LLTIERSINTWE 7 7 X2 VWET, *T
A VR=F 2T MDA U R—FENTZOPTRDD5NW-DBFEDOHETIHIEDH
WEHAD, A torch.nn.Sequential D kSR E T2 e EL k572D, HART
=y LTHALES, AFO#HTIE. ZhADA VK- MIMTVERA, Seq
uential ¥, FITHELZL AV — (ABTEEI2—-NAT7V27 P IFERILE
RCHWET) £TE2AE L., I OIHICFEITTZ2L5R LAY —TF, BKarhoik
WETLEERTZDICHHTT, MOrhhdH 2550 8D —RINZETVERDS
HFIZVAR220E51ZHRDETHE, HOPIZa—FREIRDES, ETANDANT

10



2.2 [EfE%E 30% U.E: ZFEOI—F

UYNME, 32 X 32 7LD RGB EHfkDT [Ny FHAX, 3, 32, 32] ko T
WEF, Linear (&fiAHE) LA Y= 2RO T ¥ VYV LRI HT Wiz, Flat
ten ZHWTHEWREZ [Ny FH A1 X, 3%x32%32] IZZ# L £ 3, Linear l¥. Linear (A
NF v 2RI EAF v RIVBD L0552 ID $3, 2 2Tl 3%¥32%32 (=3072)
FrYINVAS, 32 F v I IIDOLA Y —EER L ET, KISTEELBEIE L LT Re
LU 2 A L ¥3, PyTorch TiX, {EMLEAEIZ Linear ICEHFEN TV ERHA D THIE
AT 2RENRDHD T, BRI, 32 F vy >V AN, (10 7 ZA5EZDT) 10 F v >~
VIO Linear #A L TWVWE T,

JZ k22 Sequential ZEHHEWVWETILEZRDH

from torch.nn import *
class M(Module):
def __init__(self):
super () .__init__()
self.convl = Conv2d(3, 32, 3)
self.relul = ReLU(Q)
self.conv2 = Conv2d(32, 64, 3)
def forward(self, x):
h = self.convi(x)
h = self.relul(h)
return self.conv2(h)
def m():
return M()

2.2 IEfEE 30% AL REOI—F
YR 23 BEOI—K:32.65% 67 XF

from torch.nn importx*
m=lambda:Sequential (Flatten(),LazyLinear(10))

EFTWETEZRLFETAZHEMEL, EEREzMbRV, BErEbhda—-Fz21Y X
F23IWTRLET, ETVOMER. EHE 1 EOADMEETVTY, FEHIETAHL
T A, IEfEER 32.65% TXFH 67T TLA. £73. import *DAR—RIIAET, imp
ort*& T A EMAIRET T, ZNT 1 XFHIBTE X T, dUT%Z; WCEIEATRERGED
HYETH, BITXFE I XFeLTHATWE20REHbERA, V- E £
Ja—ATP 2l bERTHEMn RERTILENDH D FTH, INEBEBER L def
nO:\n xxx £ T 25ROV T XA ZHHL Tn=lanbda:xxx £ 5 I B TEXET,

11
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1 XFOHIRE R D ET, 72720, 74K T O, BBEANTRAXEZFEZZARD
3, ZL T, Linear(3072,10) OfLH HIZ LazyLinear(10) ZHW¥ ¥, LazyLine
ar ZANF » Y ANPBOELBEEBEATREL 3 5. EBRIERETT, X588 LTid, 302
7, D5 XEDRE-T Lazy D 4 XEPEZET, BT 1 XFOHIBERDET, dL
ANF v 2N 3 (999 BUT) %o ZATHIEST 2 223 TERVEWVS ZRIiTk
D¥ET, KB, Flatten [ZEMET 5 L Linear 124 RITD T ¥ Y VW AT TN TIHEITH
II5—tRVETOTHIRTE FR A, MPIRKTEIRLRVD, UKD EZATT,

2.3 IEREA40% UL: EHLIVY—DEA

JZ~24 H#EHLAV—1—F:44.43%, 83 XF

from torch.nn import*
L=LazyLinear
m=lambda:Sequential (Flatten() ,L(99) ,ELU(),L(10))

Kk, EfRER 40% U EOEMTREDa— K2V R 24 1RLET, MEEFL
TEMAHEESMRVLD, 2 U LOEFAPKLELRD 3, FRE 99 F v >~
INVD2BETNT 0% U LZERT 52N TEE LA, Lazylinear % 2 [Afiff
W2WDT, B LICKALEF, LazyLinearLazyLinear ® 20 XF Db DI,
L=LazyLinear\nLL ® 15 XF &% D 5 XFOHIRE 2D ¥F, 2 20LHEEREOM
WIRIERE DTEMALBI A B E TS, b LIHMHELBIRD 7 v e 2 Eht 0T8I & 7
DETH. ZHE 1 ODTHIBEEFEMie 2RV BBETALEEDD S ¥ A BREFE
DERANTRAT L 72RO iE L BIEOE ReLU(ReLU (x) = max(z,0)) TLA, X FX
FHREENMERINTVET, 2D 55 PyTorch TXFEEMIEX ELU TT, AU,
ELU(z) = z (if x > 0), exp(x) — 1(otherwise) TRINF T, FHEEDF ¥ > 2 LED
99 HDIE, 2XFTTEDLEIRERNSNTIRA-ZEEB27-2DTT, Hi@lX 32, 256 7«
2 0FEFRMHENETH, DLCG FHDHIKITE L WEBIESEHR L TVWET,

2.4 IEfRE 50% ULE: BHAHFDEA
UZ k25 BAHABI—K:52.76%, 88 XF

from torch.nn importx*
m=1lambda:Sequential (Conv2d(3,9,3) ,ReLU() ,Flatten() ,LazyLinear (10))

12



2.5 EfEE 70% U E: L—TDEA

EfER 50% DLEOHMTHREDa—F2 VA 25 IRLET, MEETL2BTIX
ERPHER 72D, ZZTEAAABEZEALE Lz, BN T 2 E8A41AAIX Convad
77 ATEBEINE T, 518UE. Conv2d(ANF ¥ URIL, BAOFv >R, H—FRILIE,
ZALSAR=1,NF14>T=0,...) D FEFT, A T4 FLUBEDOFIEIIEEAIRET S,
ER 50% ML Wi EHFETHIUE, BAABEOHTF ¥ 2 VEBIE 9 F v X LT
EBARET L2, 60% U EX T 312 F v AN 2 BB ET LR, FOHEDa—
FHlEDZF 26 1RLET, 1| XFOWMTHENRS KLV FETZ VWS Db a—
Rl 7N FWREC T I, N =T X—XDOWHE LAY T8 A, 1HME
RIS TIE ELU 2SR TIEH 2 DT T, IEMRRMENE WS EDH D, RelU AL
TWET, ELU TIEANMED 0 HEDGEIIRITEFER 25725, RWEEREZ
o CIERRMED H 2 & 5 R F THEDLDND LD ICTR2RBERD D05 LNLER A,

JZ 26 BHFAHFI—RFv>RILE99: 60.78%, 89 XF

from torch.nn importx*
m=lambda:Sequential (Conv2d(3,99,3) ,ReLU() ,Flatten() ,LazyLinear(10))

25 IERETO% UE: L—-TDEA

W—T0HZI—K:74.69%, 119 XF (=IFEEmEFDELTWSH. O—FLiE
URE27 giopFsr oL TWE I LR

from torch.nn importx*

S=Sequential

m=lambda:S (x [S(LazyConv2d(99,3,i) ,BatchNorm2d (99) ,ReLU())for i in[1,2]1%3],
—Flatten())

IS, IERHE 70% DL EOEMTE, a—FKZVR M 27IRLET, 2EDETIL
TEARTHRED, 3EUEDETALETEZRIE I FTERLE T, TIIE0E
EIRAMLE T, MR- TWA D, 1 DFOMEIFCLTVEE T, ¥, Sequen
tial 23 2 Effibh 2720, ZHIWCNRALTVWET, [£(i) for i in X] ¥ WS T
ITH, VA MAERILTT, XKWV A MVEDHNIEARELR A TV 27 V252 FF, BlX
. [£(1) for i in [1,3,5]]1 k. [£(1), £(3), £(B)] W HFERL HfliTd, BY
BEITH L TERRZE5EGZTHRMERE, VAP LTHET2Z 0 TEET, [
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$2E J—FEE

1,21#3 1%, VA MINT2HIET, BOERLEZEKRLET, $2bb. [1,2]%3==
1,2,1,2,1,2]1 TF, YR MAERGL T, @FE for DI, in DEAITIEAR— A
FETED, BHA LTHEIARONFER T IEAIEAR—ZAZER LTI -

DERA, ZHUTED, ..0for i inl... EWVWI X ITAR—% 2 XFHHIWTE
9, RS, VA PORIO*TTAH, VA NOEZRZERO5IE L U TERT 3%ETT,
FlZIE. £(*[1,3,5]) 1X £(1,3,5) ¥fliz 72 D £3, Sequential I&. AIEZRD5[E
ELTULAY—2RIWB 0, ZOMCEEHLTY A PNEERELTERERL 2L A
Y—DHEEZET, TALDEEEALERIZV AN 29D X512k %T, R
DL, BAAAGCEDETLEWS ZLITRD ET,

R, BEFBOETNE LTOT 7= 72 LET, ZITRITLIC2DO0D7
A LazyConv2d ¥ BatchNorm2d 23 L TWE§, BatchNorm2d (& \ v FI1ER(LE T,
ANDEF % Y INMZDNWT, I =Ny FHADEDFEZ 0, 7E 1 e RE2E57 74
VEHTH I THERRETEZDDTT, AFEOL—ATRINBRVWEFEEAL T —
¥a VRIS B IEEROME LEEME L FIEA 7L — a YENICIERE 70% & E
JRCEFRATLz: XFBPEVWTIVPRAE 228 FEA. Fv ¥ r VU BHEERE
@ LazyBatchNorm2d » & D £§ 45, ZDa— K TIEXCFHHEIBUCHFS LEE A, LazyC
onv2d iX. ANF ¥ Y IR B TE 2 BAIAABETT, BAIAABDOANF ¥ > 3L
¥Z 3 ML T2 DT, Lazy & D dF % > 3 ZBRINCER LT 999, 5 31F5 0
WO TTD, ANF v VANV EDPBRYIDETIE 3 O LMDOETIZ 99 &b, &
TR E L 72D EF, V—TEH j »MRIZ0,1,2,3... £RR2%E. [3,99] [(>0]
DEICHEFITRELERT 22T TERIFIBRVWTT, Lazy FHVWE AL D
FWTT, WK LazyConv2d D5 ET T, LazyConv2d (HAF ¥ > %I, h—FILig
JARSAR) b9, AMT A NMEEDRIDELEEL LT, jh2+1 for j in ra
nge(6) bEZXLNETH, j for j inl[1,2]*3 DAPEVTT, A+ 74 KA1 & 2
KKRARXEREIN TV EPEETYT, A FI74 R, HhovsEeinn 1 oBET 3
eI ATNEN T 2 BAAADBOBEFEHZRTDDTT, BAAAFOHEIRDOHI T
A ZOFERE (ANETZENVIE 42 x T4 V7 — =3 NVIR) /A P74 K +1 0Dk
SIHEDET, AFIAFE2 1222122212 20)EHCTS T, HEY A XH
322302 14—>12>5—->3—>1ZbL. BT LA 1ITRDE IADR

Y IFTY, BREOEBAALBORNT VY ALDIBRE INYFHAX, 99, 1, 1] &
BhFET, Zh%E Flatten AT 2, INYvFHAX, 99] oHI»nBonET, H
HF 10 7 S ARERZDOT [INyFHAX, 10] L RZ2DBIELVDTTA, EED=D
DA—FIFVRAF28DEIRoTHED, HFBRLF v INDHoTHLTT—7xK
Bxgd, 11 HEUED Y 7 FEEF—RICHBELZVDT, ADERKEHNT2

SWHEEDPEATH EEZONE T, BT TAN 10D 2DITI F ¥ > VLT
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2.5 IEfRE 70% UL: L—TDEA

O EEZ 3 e ETHLS IR D ETDOT, BEAMOa—FTI10 Fv >3 LOH
O ZA%29F ¥ INZHS L Ta—FEELSTEIIEHERIEHA, HIRY A X
MIRCRZILFEET, LA XN 2T [INyFHILX, 99, 2, 21 0D
WOt kzde, 2% Flatten IZH5ZAMERD [Ny FHAX, 396] 2D ¥ET, Fv
¥ AIVEHEE WD BT TIERERTA XN 17 L05EEbD FHAD, [N
wFHA4X, 0, 0, 01 57 R0 KRG, NyFHALX, 0, 0, 11 75 A 1ITH
JEE WS ZXIZEDET, LALIHREF v R ETIEE L ERAHDRIE 7 2 Lhs
D75 ZZHIETHE VI ELLRWHEEE RD, 5 L ¥FETETEHA, HFET A X
Z95FL 1 EZRNCRZEICHEITAZICE D, RELEDSHESEEAK T2
TETVWET, F/z, B@HEDOET N TEREDEAAAECEEAEIIEIEELREECE FH
WEEAD, VA MNNERLOMETHREBELIBEATITI2Ie 0 TEERA, TAT
HEBPPELDT, DLCGREDT 7 =v 7 LTHES 2P TEFET, ERIDEIC,
HEEEOILE IR L TBHO TERVEBHRBA->TEY EFTOTIEEL I,
BB, Fr xR 2D 99 KDEMXEEL, VR F 210 D XD ICHTIEMRE
BRI ELET, —f. HOETAMEES ML E Lz, SEOL—ILTIEMRE 80% L
LEERSTZ2ETNVEBRERPOROPD ERATL, AERHZETAMEL LT
Residual #E2 ¥ 2 L F L7z, =Ry Z78% 5 ICHEE LIIRETIIIERENGE L 12
DERATL, Bt TEREEDNEAETERLZET LTS 80% U LEDIE
RIELNETT L, IO EMLZET LT IO ULOEMELHIET Z L A[EETIXD
DEg*, LarLiihwrrZ=oy 27%ERTa— FEEL T35 —242 LTEIICIEEHE
R D TEETOT, ZZFTeLEL, EEDPHELIa—-REID LD F
T, FEFBL VWO HEL, A7V ICERINZ I RLOERBIT NS, T/
KEDZ 7 R e HMHAGLE 2 Z e PRER R bk oz, a— FERAUL
A2 L TWE2Ebr )T WEL D L7z, DLCG KHEEER - T X o725
B, PERODA—-FINT7DEI7R, a—-FERTHMAEL-TEI2b2OLRVE D KA
Bz a— RORERE 22 KO REHVHEREZHAEL TSNS Z e 2L TED
F3,

*199% LI LOIEMR L 2 2 EFADMASINTWE T, https://paperswithcode.com/sota/image-
classification-on-cifar-10
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BERZHETZI—F (self.model LAV —HEBRL/BEHRTERLIETE
DK 28 7))

X, y = batch
logits = F.log_softmax(self.model(x), dim=1)
loss = F.nll_loss(logits, y)

UZR 29 XEEEHELICODZEEALIEN-aYy

from torch.nn import*
def m():
return Sequential(

Sequential (LazyConv2d(99,3,1) ,BatchNorm2d(99) ,ReLU()),
Sequential (LazyConv2d (99, 3,2) ,BatchNorm2d (99) ,ReLU()),
Sequential (LazyConv2d(99,3,1) ,BatchNorm2d (99) ,ReLU()),
Sequential (LazyConv2d(99,3,2) ,BatchNorm2d (99) ,ReLUQ)) ,
Sequential (LazyConv2d(99,3,1) ,BatchNorm2d (99) ,ReLUQ)) ,
Sequential (LazyConv2d (99, 3,2) ,BatchNorm2d (99) ,ReLUQ)) ,
Flatten()

YR 210 IWL—TOHBI—F (Fv>oxILE 256) : 75.16%, 121 XF

from torch.nn import*

S=Sequential

m=1lambda:S(*[S(LazyConv2d (256,3,1) ,BatchNorm2d (256) ,ReLU() )for i in[1,2]*3],
—Flatten())

2.6 ConvMixer D579 =v ¥

SEEENERLEL NV LTI ETADNEE T T CEHTEEBATL RN,
DLCG ®7 4 F7 % o7 ConvMixer Da— FZ2EL T3z iffibhz77=v
TIZDOWT, EFRD IR TSR L E 5,

JZ k211 ConvMixer Dd— R (Fi8)

def ConvMixr(h,d,k,p,n):

S,C,A=Sequential,Conv2d,lambda x:S(x,GELU(),BatchNorm2d(h))
R=type('',(S,),{'forward':lambda s,x:s[0] (x)+x})

return S(A(C(3,h,p,p)),*[S(R(A(C(h,h,k,groups=h,padding=k//2))),A(C(h,h,1))) for
— i in range(d)],AdaptiveAvgPool2d((1,1)),Flatten(),Linear(h,n))
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2.6 ConvMixer DT 27=v %

A=lambda x:S(x,GELU() ,BatchNorm2d(h)) i¥. 7 AXNERTT . 518 x 113Hl
ZIX Conv2d () A D £F, S=Sequential DT, x IZHWW T, GELU(). BatchNorm2
dQO DPETENBEIIREY 2a—NA TV IPERINZZITRDET, DD,
BAIAAIZE DI IEHE LR BN 2 EH 2R b £ 7,

ROTIFRBEN R VB SHWSRTWE T, R=type(’’, (S,),{’forward’ :1lambd
a s,x:s5[0] (x)+x}) &, Residual #iE%2E27-0D 7 7 REFEL 2D T, HAAARM
B type X, Bl 120 & 3O LD ETELBENELD T, SHEIL, typ
e(name, bases, dict, **kwds) LW I 5HUTRD., 77 RAERZHINCETL X,
name |37 7 ARG TIMPEXTFHITHL T —I1272 ) ¥ A, bases id, HEI I A%
NTHELE T, ZIZTlE. S=Sequential DMEEINTWVE T, dict ik, 77 ADX
Vo REEHELET, ZITE forward XY v FEIFALAXAXDOETEZTVWET, lam
bda s,x:s[0] (x)+x ZMEFH L 5, 518 s 13, Hilll self LEPNDZ DT, 772D
AVRAR AR LE T, x ERHDSIT, 7Y NVERTIWMDET, 7oV Vx&d
LAY =I5 Z27=H1s[0](x) &, TAD x R LD DEIRT Z & T Residual £
EEEBLES, s[0] 3 I25RKRZDTL & 55, Sequential 7 7 RiEk, 2R b
o7 2D EE., BADA YTy 7 RBEDEISICMOET I TEET, HlAE m
=Sequential (Conv2d () ,ReLU()) ¥ EFK L7z & £, m[0]==Conv2d(). m[1]==ReLU()
DESWTHEDET, 77 AR I Sequential ZHAEALZDDTHD, aYA I 7 XIX
FEEELTOWARVAED, R(Conv2d() EWVWI A YA I 7 XFUFH LI LT, ZDX
YV v FNTIX self[0] T Conv2d() DM T Z B TEET, MR, forward(x) X
Yy FTE Z7ARDAVAL I 7 RICHEZTVAY—FTP 27 MZx 252 THY
HUZRERE, x 2R LAEBRZET WS UEBMTbIh 3 Z ik b 3,

BREDITIXFIOETHEI LT 7 =v 7 FAILT, VA MERRICLZEDNET LD
ERMTOOTVWET, ZB. ) for i in range(d)] &, )for i in[0]*d] ¥ k&
TEEF, /2. AdaptiveAvgPool2d((1,1)) & AdaptiveAvgPool2d (1) IZMEHET &
EJan

FHFIZI-FIANT DD, BEDVELROEEOETVEERLE LR, —/HTZ
DD ESIT, BLETERARDODHZ2ETNAZHELEFZMZ 2 0HBHUBEZIOLNE
FTOT, ZABMNHEZTATIVDRHTL & 5%
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3% A
TensorFlow A\ D#2t&E

PyTorch & Wi VEXLREEFE 71— 27— LT, TensorFlow 2% D ¥3, EH
¥ PyTorch 5 Z 2 M3 A ¥ TTH, TensorFlow TH DLCG %175 & ¥ AREN
WHDBHPREEL E Lz,

faamh 58 213, PyTorch ZRH T 2 5B L RELRD2ETLZDHDIEFEDD $HA
Tl BAAABEDIZI BEEERIDESFEITZ VWS X3 REITHRNE D TT,

A1 RIGIEE

BREEUI PyTorch K D TT, ZE LT ZHEITHEWRZD 74 75V 2 ANz
{THmodel.fit() ZMERZ I THHWICL—F72ELTLNET, ZOkD, a—F
ORXDFHIBKEEL RN, VR M A1 72 THEE - FHMlilTEE T, 7—XA4A TR
T—=2arydRkWiRY, PyTorch £ E5TE D DR UETAMETS EERICETDE
HHYET,

)Xk A1 TensorFlow TOEEI—R

import tensorflow as tf
tf.random.set_seed(1) # AHETE
# Ty FRAAH
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# ETILIER
model = m() # FLAV—HERIDIETI
# PERE
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="'adam',
loss=loss_fn,
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5, batch_size=256)
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A.2 PyTorch X DtEiER

# IERR O

test_loss, test_acc = model.evaluate(x_test, y_test)

A.2 PyTorch L DIES

EEDOa— RKERLAEDN S, PyTorch & DEWEEFIL F 3,

B#IZ. TensorFlow TOBEHEDETFLVEFRI—RKE YA M A2 RLE T, Sequent
ial % Flatten |& PyTorch £ {ZIZF U TY, 7272, Sequential IFFZERESIETIIR
(LAY —DVRMEFHUCE D £F, PyTorch TO Linear (¥ Dense IZZEbH D, AN
F X YANBUEIREL D £9, $72D5 Dense & PyTorch @ LazyLinear Y4 T3,
b5 25A. ResNet DX S BRDEDDH2ETNRERT 27DD, 77 A2HWIZET L
ERAED DD EITHHLICa—- FEIERLET (A3HTMILET),

H{RT — 2 D7 —XELED, PyTorch TW& [Ny FHAX, FyoxI, 18, 5317
DKL, TensorFlow TI&7 7 # )V F T INYyFHA4X, 1@, B8, FyroxI] &
BRoTWVWET, ZOEWIFEEFAET VLB LD Reshape 21To72 0 33551
WENE 00, AEDOHATIIHED D FHATL,

URMA2 —BHBETIER

import tensorflow as tf
def m(Q):
return tf.keras.models.Sequential ([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
D

EMBEZMODLRZVEREEDI—RF%2 VY X b A3IIRLE T, PyTorch Tlid Sequential
¢ Flatten i[RI UEY 2 —/V (torch.nn) »HA Y R— b TEDOTTH, TensorFlow
T, tf.keras.models.Sequential & tf.keras.layers.Flatten &\ 5 K512
AMEADEY 2a—=NrbA4 YR—=TFFTE2RENDHY T, ZI T, tf.keras.models.Seq
uential |3 tf.keras.Sequential ¥ L TH A Y R— 1+ TX257%®, from tensorflow
.keras import*T Sequential %# 1 >K— b LoD, [IFIC layers IT tf.keras.la
yers B4 Y AR—PIND XX T2DDmRBEEZINE T, 4 VK- M OEMESHIHE
LT, 2— FOEXX PyTorch @ 67 3LFH 5 85 K FITHMLTLEVE L,
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{3£% A TensorFlow A\D#5iiE

UZ A3 =EDOI—F:38.08%, 85 XF

from tensorflow.keras importx*
L=layers
m=lambda:Sequential ([L.Flatten(),L.Dense(10)])

Rz, BEOEEREEZAHT2a— 2 X A4I1RLE T, TensorFlow TDiE
MALBIEIZ. Dense "D T X — X 5[#% T Dense(99,activation=’elu’) ¥&c
BT B ZEDAEETTA, ZNIDBHERDELU 7 7 REHVWBIESPELI D ET,

DZ+A4 EELAVY—O—F:43.41%, 103 XF

from tensorflow.keras import*

L=layers

D=L.Dense

m=1lambda:Sequential ([L.Flatten(),D(99),L.ELU(),D(10)]1)

BAAAEZHWIza— K2 ) XM AL URXMAGIWWRLET, BAAAI Conv2D
T. 5180% Conv2D(filters, kernel size, strides=(1,1), ...) T%, ANF ¥
YAINMBIIAETT, T—RA =T AT =2 ayOEVWEFICED GEFEESK). F v
VR 99 TIHIEMRR 60% (LD 07272 F ¥ ¥ 3D 3 TR o TV E T,

JZ~A5 BEHAHI—R:51.93%, 108 XF

from tensorflow.keras importx*
L=layers
m=lambda:Sequential ([L.Conv2D(9,3),L.Flatten(),L.ReLU(),L.Dense(10)])

DX+ AB BHAAI—FFv2xILE512: 60.22%, 110 XF

from tensorflow.keras import*
L=layers
m=1lambda:Sequential ([L.Conv2D(512,3),L.Flatten(),L.ReLU(),L.Dense(10)])

BRBIZ, V=T EEALZEVETAEY AN ATITRLE T, PyTorch & [AkE, H
HNF X ANEHP 10 KO KELTHZ TR D EHA, F v 1LH68 1%, IEEE
0% A E¥i22 K557 X=X DK EIT o 7 HRTF, Sequential DFIEUIIAIER
FHETIERK VA FROT, VR FOFEEZHOWTRED Flatten 2L TWE 3,
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A.3 Residual #§&%50id 3

UZEA7 IL—T7D#H31—F:70.26%, 148 XF

from tensorflow.keras importx*

L=layers

S=Sequential
m=lambda:S([S([L.Conv2D(68,3,i),L.BatchNormalization(),L.ReLU()]1)for i in[1,2]*3]
—+[L.Flatten()])

A.3 Residual i§&%5itd 3

PyTorch T#H» 417z ConvMixer Ot T8 L7z, Residual #i&E (y = f(z) + z) %
TensorFlow T3 EWTAE T, TensorFlow THIEAH % EF N 2R T 2 HikX
20® Y. Functional APTIZ X5 FHiEE., 77 7 2ic &k 2 HE LI E T,

%3, Functional API TOEFAH@BHKIZ Y Z b A8I1TRL %3, Functional API T
. BT ADANERTEEE Input TEKL, TNELAY—F T2 MTELT
ZOHNERIERZIERER L TV T TEFLOMEEZRLE T, RLIZ. EFL
RO AN & 72 2 EH % Model BABUCIEST Z 2T, ETADTEMRL ET, EEITE
EEATE 20T, NIEERHT 2B TEET, 1=ReLU(k) +k itid T iU, JEH
12> Y 7 IZ Residual EP R TE £3, Residual LA Y —%2ERT 2D TIERL,
ETNVEBRBXOFT2HEEUCEREMES 2 TREALET, LAY —HLDOORPD EHR
FTEREHRNCRAZ S Z e By Y TV XDERTY, 270, BEEHRIIIRALT
IO EERDWE VT RVEDRAHBRAET, VA MEREL (=) THEVETLER
Hy2Zen#L < b %3, DLCG MIZEFEVWISWTL & 5,

)X + A.8 Functional APl TOEFILaE Al

from tensorflow.keras import *
from tensorflow.keras.layers import *
def m(Q):

i=Input([32,32,3])

j=Flatten() (i)

k=Dense (128) (j)

1=ReLU() (k)

m=Dense (10) (1)

return Model(i,m)

RRICRDFEREDEHVETNVERAETDHE2 Y77 7RI K2 FEEZRLES, V
A b A9 1Z Residual L4 ¥ — Dbl ZR L %9, PyTorch ® & £ ¥ # 2 /I3[R U T,
Sequential 7 7 AZMA L. LA V¥ —FITRHCIF I E NS call XYV v FEAd—oN—
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{3$% A TensorFlow A\ Dl

74 F LT Residual #5& %% L £ 3, PyTorch 1281} % forvard % call IZ, self[
0] % self.layers[0] ICE#L LD £7,

UZR A9 HTU5RETD Residual EEit )

from tensorflow.keras import *
from tensorflow.keras.layers import *
class Residual (Sequential):
def call(self, inputs):
return self.layers[0] (inputs) + inputs

# =AM

r = Residual ([ReLU()])

x = tf.constant([1.0, -1.0])
r(x)

#=>[2., -1.]

DLCG 5L<K. ZOa—F2ESRLABLAMRZY AN AL0ITRL£7, type B
ZFHF % D1k PyTorch 2R U2 DT A, TensorFlow TR RELIRINHET L 7z,
F15ECx T, BEXFINTT 2 NHDA— R TZI—RELET, 77 RA%D
1 XFEDP LS TEHELEZZ2BENH D, 1 XFHPZ W=D IndexError A3
AT FET, 72XKL05182E. F—V— F5IBER T S*+d DIRET LR, ET IV
DEFTHEZ R HERF 2 E/RT training ¥ —7 — N5 (Dropout HFDOEFNIE D
%) BPEINZID, THEZITIWMSRVE LT —IZRDET, LirL. RERERT
HBVAPAITIEF—V—FIEERBLRLTHZI IR EHA, ZOHEHIL,
TensorFlow NEID LD X Y v FOBZITI S 518252 L. ERICEDOE TEYIZRT
ZETEIICEEINTVEDTT, L2LEPLTLXATAY vy F2ERTEZ
EDPRESINTOVIRVDD, HEDEE > TL W {’call’:lambda s,x:s.layers[0]
X)+xIE VI ERICH LT training F—V— F5[BEE5XTLEVT I =X > TV
ESEa

JZ kA0 EEIhicH 7o S5 TD Residual 52

from tensorflow.keras import *
from tensorflow.keras.layers import *
R=type('x', (Sequential,),{'call':lambda s,x,**d:s.layers[0] (x)+x})

K E®D & 51z, TensorFlow T% PyTorch 2 IFIEF U & 512 DLCG ZiERZ & N TE
5Ze0bh b E L%, "tensorflow.keras"s"torch.nn' K hEWZ &, K[EFHH»
B TEEEE X 2EEOFHIEE T, PyTorch X ha—RFBRELSR-oTLESHALNH
5ZeBbhrbEL7,
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HEHS

LY —IAFD, ¥ THBRVGHAMETITLTAE Lz, HEEEEZFEHAENTL SLL
MCH, HBZEH > TOWAARBEU DB TEL I ERLEVEESTEEE LR, XA
VI —XTHEZRTEUNFLVAIARDRESL S HETES S, HfiiE 12 255 X h
205 THROWT - T—MEAEEVTALSI LW EFR—Y a3 Uh 5T — VBT
ZITVE L7, 11 HCEEFEEHOFRBRSTE TV TTN, FifiZElo %0 5H
Fil) (RIARICTED B - 7-MHZ AL HIFITE 2) OKEEGIF ¥ > R— 22
HMEXNT-DTRBWHADHT ZLICL E Lz, TOEMOHIRIATEER R — 8D FRIC
ELTELT, NEZHELCITHEICHLNEOWDIENMEL Ko TLEVWE L,

REDA FZAME, Y~7FbA (R) PRITBOICBLENRA -V —RIZAD &
LR TH-TVWR WS Fax—yariefigE Lz, BEXEOETNVESR T HHE
ROHEMTE2LVIREDT—FERBHALTVET, Y I7FE2ALVIDEY~Y T
RIEFOA VO F L F v 7T, EEERPILIHEEHRFLTCOET, Fv 778 —7F
A EePE XD DLRERNDTTH

D34 F A P ERHERDTDI 2021 FICA>THL ST, TFOMFERNPLELAT
WET, UTDOLSBZonI0H->T, BEDFANGEICEEDA A M EEESICED
¥ L7,

o 200X 4F {BH] [O2ED R vF ) OWRHREWVWI F ¥ 57 X2 [EMEEATY
2 DFEMFENICES THREIHC 720 LWOIREDNDHD . RALHRLIKUICH
%

o 2018 fF #WIDOFR AGEZETIIT, FTKIZ Word TEHICHE- 7203, EHOY — 7L DA
ERTVWRRHBRRENZITI6RFE LIRS

e 2020 9 AKEORBE 7 KRV F v —F — AT, ffigfitchs e v %2F
o CRIANGERZSICHZ WO F UL RET, 419X ]‘75’%%7’;(726

o 2021 4 BRO T & OEERICHIEDBERI LN TED . MORIULE K
2L, 47X bDMERICETF
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